99 research outputs found

    Finite-key security analysis for multilevel quantum key distribution

    Get PDF
    We present a detailed security analysis of a d-dimensional quantum key distribution protocol based on two and three mutually unbiased bases (MUBs) both in an asymptotic and finite key length scenario. The finite secret key rates are calculated as a function of the length of the sifted key by (i) generalizing the uncertainly relation-based insight from BB84 to any d-level 2-MUB QKD protocol and (ii) by adopting recent advances in the second-order asymptotics for finite block length quantum coding (for both d-level 2- and 3-MUB QKD protocols). Since the finite and asymptotic secret key rates increase with d and the number of MUBs (together with the tolerable threshold) such QKD schemes could in principle offer an important advantage over BB84. We discuss the possibility of an experimental realization of the 3-MUB QKD protocol with the orbital angular momentum degrees of freedom of photons.Comment: v4: close to the published versio

    Twisted Photons: New Quantum Perspectives in High Dimensions

    Get PDF
    Quantum information science and quantum information technology have seen a virtual explosion world-wide. It is all based on the observation that fundamental quantum phenomena on the individual particle or system-level lead to completely novel ways of encoding, processing and transmitting information. Quantum mechanics, a child of the first third of the 20th century, has found numerous realizations and technical applications, much more than was thought at the beginning. Decades later, it became possible to do experiments with individual quantum particles and quantum systems. This was due to technological progress, and for light in particular, the development of the laser. Hitherto, nearly all experiments and also nearly all realizations in the fields have been performed with qubits, which are two-level quantum systems. We suggest that this limitation is again mainly a technological one, because it is very difficult to create, manipulate and measure more complex quantum systems. Here, we provide a specific overview of some recent developments with higher-dimensional quantum systems. We mainly focus on Orbital Angular Momentum (OAM) states of photons and possible applications in quantum information protocols. Such states form discrete higher-dimensional quantum systems, also called qudits. Specifically, we will first address the question what kind of new fundamental properties exist and the quantum information applications which are opened up by such novel systems. Then we give an overview of recent developments in the field by discussing several notable experiments over the past 2-3 years. Finally, we conclude with several important open questions which will be interesting for investigations in the future.Comment: 15 pages, 7 figure

    Generation of Caustics and Spatial Rogue Waves from Nonlinear Instability

    Get PDF
    Caustics are natural phenomena in which nature concentrates the energy of waves. Although, they are known mostly in optics, caustics are intrinsic to all wave phenomena. For example, studies show that fluctuations in the profile of an ocean floor can generate random caustics and focus the energy of tsunami waves. Caustics share many similarities to rogue waves, as they both exhibit heavy-tailed distribution, i.e. an overpopulation of large events. Linear Schr\"odinger-type equations are usually used to explain the wave dynamics of caustics. However, in that the wave amplitude increases dramatically in caustics, nonlinearity is inevitable in many systems. In this Letter, we investigate the effect of nonlinearity on the formation of optical caustics. We show experimentally that, in contrast to linear systems, even small phase fluctuations can generate strong caustics upon nonlinear propagation. We simulated our experiment based on the nonlinear Schr\"odinger equation (NLSE) with Kerr-type nonlinearity, which describes the wave dynamics not only in optics, but also in some other physical systems such as oceans. Therefore, our results may also aid our understanding of ocean phenomena.Comment: 5 pages, 4 figure

    High-dimensional two-photon interference effects in spatial modes

    Get PDF
    Two-photon interference is a fundamental quantum optics effect with numerous applications in quantum information science. Here, we study two-photon interference in multiple transverse-spatial modes along a single beam-path. Besides implementing the analogue of the Hong-Ou-Mandel interference using a two-dimensional spatial-mode splitter, we extend the scheme to observe coalescence and anti-coalescence in different three and four-dimensional spatial-mode multiports. The operation within spatial modes, along a single beam-path, lifts the requirement for interferometric stability and opens up new pathways of implementing linear optical networks for complex quantum information tasks.Comment: 14 pages, 12 figure

    Controlling induced coherence for quantum imaging

    Full text link
    Induced coherence in parametric down-conversion between two coherently pumped nonlinear crystals that share a common idler mode can be used as an imaging technique. Based on the interference between the two signal modes of the crystals, an image can be reconstructed. By obtaining an expression for the interference pattern that is valid in both the low- and the high-gain regimes of parametric down-conversion, we show how the coherence of the light emitted by the two crystals can be controlled. With our comprehensive analysis we provide deeper insight into recent discussions about the application of induced coherence to imaging in different regimes. Moreover, we propose a scheme for optimizing the visibility of the interference pattern so that it directly corresponds to the degree of coherence of the light generated in the two crystals. We find that this scheme leads in the high-gain regime to a visibility arbitrarily close to unity.Comment: 9 pages, 4 figure

    Automated Search for new Quantum Experiments

    Get PDF
    Quantum mechanics predicts a number of at first sight counterintuitive phenomena. It is therefore a question whether our intuition is the best way to find new experiments. Here we report the development of the computer algorithm Melvin which is able to find new experimental implementations for the creation and manipulation of complex quantum states. And indeed, the discovered experiments extensively use unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger (GHZ) state, to a vast variety of experiments for asymmetrically entangled quantum states -- a feature that can only exist when both the number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional transformations are found that perform cyclic operations. Melvin autonomously learns from solutions for simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability to automate the design of a quantum experiment can be applied to many quantum systems and allows the physical realization of quantum states previously thought of only on paper.Comment: 5+8 pages, 4+1 figures (main text + supplementary
    • …
    corecore